Curriculum for Master of Technology in Electrical Power Systems (MTech EPS)

(Pattern 2024)

With Effect from A.Y. 2024-25

Matoshri Education Society's

Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

NBA and NAAC Accredited, Approved by All India Council for Technical Education, New Delhi, Affiliated to Savitribai Phule Pune University, College Code: 5177
Website: https://engg.matoshri.edu.in Phone: +91 0253 2406600, 18002336602

Eklahare, Near Odhagaon, Off Nashik-Aurangabad Highway, Nashik, Maharashtra 422105

Curriculum for Post Graduate Programmes- MTech EPS (Pattern 2024)

Matoshri College of Engineering and Research Centre, Eklahare, Nashik has been granted the academic autonomous status from academic year 2024-25 by University Grant Commission. The Academic autonomous status has been considered as an opportunity for imparting comprehensive education. The academic autonomous status can be utilized to implement the National Education Policy (NEP 2020) effectively. The institute has a prudent plan to incorporate necessary dynamism in academic structure to march towards the vision of the institute and develop the research and skill oriented human resources contributing to the development of the nation.

With a focus on staying at the forefront of educational innovation, the institution diligently prepares curricula that are both dynamic and industry-aligned. This process entails meticulous planning and collaboration to ensure the development of comprehensive programs catering to the evolving needs of students and industries alike.

The highlights of Master of Technology (MTech) curriculum:

- Every Post Graduate programme is of two years duration with four semesters.
- The curricula have been designed adhering to the NEP guidelines and norms.
- Efforts have been taken to design the curricula which are unambiguous and self explanatory.
- Students have to earn 84 credits for the award of MTech degree.

Credit Requirement and Eligibility for the PG Programme

Eligibility first year PG admissions will be as per guidelines provided by Admission Regulating Authority of Government of Maharashtra and guidelines of NEP2020.

Examination and Passing

Rules of Passing

- To pass the course, the student has to earn a minimum of 40 percent marks in End Semester exam and 40 percent average marks (In-Semester marks + End-Semester marks) in the exam head.
- Students can earn the credit of the course if he/she passes the course with appropriate grade.
- The student is declared as PASS in the corresponding year if he/she earns the credits of all the courses of the year.
- A student will be awarded the master's degree if he/she earns 84 credits.

Rules of A.T.K.T.

The students who is not detained to appear in examination either in first semester or second semester of First year and, has filled the form of examination is eligible to take admission in second year of PG course.

Exit Point

For those who join 2 year PG programmes, there shall only be one exit point. Students who exit at the end of 1st year shall be awarded a Postgraduate Diploma.

This document includes-

- Credit Distribution Across Semesters and Course Code Nomenclature
- Examination Heads and Assessment Schemes
- Various Courses' Categories, Description and Abbreviation
- Program Outcomes
- Four Semesters Course Structures
- Broad Courses' Categories, and Credit Distribution
- Curriculum for semester I
- Curriculum for semester II
- Curriculum for semester III
- Curriculum for semester IV

Matoshri College of Engineering and Research Centre (Autonomous) Curriculum for

Master of Technology in Electrical Power Systems (MTech EPS) 2024-25

Table of Contents					
Sr. No	Description	Page No.			
1.	Semester I				
	24P1301: Computer Applications in Power System	17			
	24P1302: [MOOC_1]	19			
	24P1303: Research Methodology	20			
	24P1304: Power System Economics and Management	23			
	24P1305 (A) Partial Discharges in Electrical Equipments	23			
	24P1305 (B) Industrial Automation and Control				
	24P1305-(C) Smart Grid Technologies				
	24P1305 (D) Advanced Power Electronics				
	24P1305 (E) Generic Elective **				
	24P1306: Program Core Course Lab I	35			
	24P1307:Program Elective Laboratory I	37			
	24P1308: Study of Indian Constitution	38			
2.	Semester II				
	24P1309: MOOC_2				
	24P1310: Power System Modeling				
	24P1311: Power System Planning & Reliability				
	24P1312 (A): EHV AC Transmission				
	24P1312 (B): Energy Storage Systems				
	24P1312 (C): Communication Protocols in SCADA system				
	24P1312 (D): Electrical Power Distribution Systems				
	24P1312 (E): Generic Elective **				
	24P1313: Program Core Course Lab II				
	24P1314: Program Elective Laboratory II				
	24P1315: Project and Finance Management				
3.	Semester III				
	24P1316: [MOOC 3]				
	24P1317: Power Quality Assessment and Mitigation				
	24P1318 (A): Artificial Neural Network and its applications in				
	Power System				
	24P1318(B): Advance Processors and Applications				
	24P1318(C): Renewable Energy				
	24P1318(D): Intelligent Sensors and Instrumentation				
	24P1318(E): Generic Elective				
	24P1319: Program Core Course Lab III				
	24P1320: Company Law and Corporate Governance				
4	24P1321: Dissertation Stage-I				
4.	Semester IV				
	24P1322: Internship				
	24P1323: MOOC_#3				
	24P1324: Dissertation Stage-II				

	Table 1: Total Credit and Total Marks for Master of Technology (MTech)						
Semester	Total Credits	Total Marks					
I	22	650					
II	22	650					
III	20	600					
IV	20	600					
Total	84	2500					

	Table 2: Nomenclature for Course Codes								
Format for Course Codes- YY - Year of Course launch U/P- U : Undergraduate NN- Branch Code MM- Course Number									
NN	NN Post Graduate Programme NN Post Graduate Programme								
10	MTech Geotechnical Engineering	13	MTech Electrical Power Systems						
11	MTech Data Science	14	MTech Heat Power Engineering						
12	MTech VLSI and Embedded System	15	Master of Computer Applications (MCA)						

	Table 3: Examination Heads and Assessment Schemes								
Exam Head	Abbr eviati on		ster Exam 'otal Marks)	End Semester Exam					
		In_Sem_Exam_1		(60% of Total Marks)					
Theory	ТН	CAT/CCE based on 20% curriculum	CAT/CCE based on 20% curriculum	Theory examination based on 60% curriculum					
Project	PROJ	Progress Review I with Demonstration, Presentation, Oral & Report	with with Demonstration, Presentation, Oral & Presentation, Oral &						
Internship	INT	Progress Review I with Activity, Presentation, Demonstration, Oral & Report as applicable	with Activity, Presentation, Demonstration, Oral & Report as with Activity, Presentation, Demonstration, Oral & Report as applicable						
Practical	PR	Mid-semester exam activity performa Presentation, Oral a appl	Experiment, activity performance, demonstration, Presentation, Oral & Report, journal as applicable						
Term work	TW	Mid-semester exam activity performa Presentation, Oral a appl	Activity, Experiment performance, demonstration, Presentation, Oral & Report, journal as applicable						
Seminar	SEMI	Mid-semester review based on topic of study, literature study, draft of paper manuscript, report(s) and other as applicable Discussions, Presentation, Report publication as application as application.							
Continuous Assessment Test	CAT	Class test examination to assess and evaluate a student's progress with descriptive or objective questions as measure of the student's knowledge and skills in online or offline mode.							

Continuous and Comprehen sive Evaluation	Examination that evaluate learners' abilities based on various dimensions viz- academic performance, work experience, skills, coordination, agility, innovation, teamwork, public speaking, behavior, and similar as a measure of knowledge, skills and attitude.
--	---

Table 4: Various Courses' Categories, Description and Abbreviation					
Broad Category	Description	Abbreviations			
	Programme Core Course	PCC			
Dragnam Courses	Programme Core Course Lab	PCCL			
Program Courses	Programme Elective Course	PEC			
	Programme Elective Course Lab	PECL			
Multidisciplinary Courses	Multidisciplinary Course	MDC			
Withtuiscipiliary Courses	Generic Elective	GE			
Experiential Learning	Project	PROJ			
Courses	Internship / On Job Training	INT / OJT			
	Practical	PR			
	Internship	INT			
Course Type/	Theory	TH			
Teaching Learning	Tutorial	TUT			
Schemes / Examination	Lecture	Lect			
Heads	Laboratory Course	Lab			
	Term work	TW			
	Seminar	SEMI			
МООС	Massive Open Online Courses by NPTEL under SWAYAM	MOOC			
Project Management, Finance and Governance	Project Planning/ Entrepreneurship Development / Engineering Economics / Management/ Corporate Laws/ Corporate Governance	PMFG			
In Semester Examination	In_Sem_Exam	ISE			
Continuous Assessment Test	Continuous Assessment Test	CAT			
End Semester Examination	End_Sem_Exam	ESE			
Continuous & Comprehensive Evaluation	1				
Bloom's Taxonomy	Bloom's Taxonomy BL				
Course Outcome	Course Outcome CO				
Program Outcome Pogram Outcome PO					

	Table 5: Program Outcomes				
At the	end of Post Graduate Program, a student would have:				
PO1	Problem Solving and Research Skill:				
	An ability to independently carry out research /investigation and development work to				
	solve practical problems				
PO2	Communication:				
	An ability to write and present a substantial technical report/document				
PO3	Lifelong Learning: Students should be able to demonstrate a degree of mastery over				
	the area as per the specialization of the program. The mastery should be at a level higher				
	than the requirements in the appropriate bachelor program				
PO4	Critical Thinking, Project Management and Finance, Scholarship of knowledge: Demonstrate advanced knowledge and skills understanding management principle to analyze complex engineering problems critically, and apply the same to, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economical and financial factors while working as individual or in teams or as a leader in a team.				
PO5	Collaborative and Multidisciplinary work: An ability to think critically and apply appropriate logic, analysis, judgment and				
	decision making and to function as an effective member or leader of engineering teams				
	to achieve common goals.				
PO6	Usage of Modern Tools, Ethical Practices and Social Responsibility:				
	An ability to use appropriate techniques, skills, and modern engineering tools necessary				
	for engineering practice and commit to professional ethics and responsibilities				

Program Specific Outcomes					
At the end of Post Graduate Program,					
PSO1	To analyze and solve the problems related to electric grid using modern techniques				
	and tools.				
PSO2	To design and develop power electronics hardware and its control to cater the				
	needs of industry such as renewable interconnections.				

Matoshri College of Engineering and Research Centre (Autonomous) Master of Technology in Electrical Power Systems (MTech EPS) (wef 2024-25) Table 6: First Year MTech Electrical Power Systems (FYMTech EPS) Semester I **Examination and Marks** (% of Total Curriculum and Marks) **Teaching Scheme Courses** Credit End_Sem Hrs/Week In Sem Exam Exam Marks (40%)(60%)Course **Exam Course Code Title of Course** TUT PR CAT TH TUT PR Lect CCE **ESE Total** Total **Type** Head Computer Applications in 24P1301 **MDC** TH 20 20 60 100 4 4 4 Power System MOOC 1 24P1302 PCC 4 4 4 TH 20 20 60 100 2 2 2 24P1303 Research Methodology PCC TH 20 20 60 100 Power System Economics and 4 4 4 24P1304 TH 20 20 60 100 **PCC** Management 24P1305 PEC Program Elective Course I 4 4 TH 20 20 60 100 4 24P1306 **PCCL** Program Core Course Lab I PR 20 30 50 2 2 4 24P1307 **PECL** Program Elective Laboratory I PR 2 20 30 50 1 1 24P1308 Study of Indian Constitution **PMFG**

20

260

650

30

390

50

650

18

1

22

3

1

22

Total

Total Hours/ Week

SEMI

18

01

25

6

Course Code	Course Name
24P1305-A	Partial Discharges in Electrical Equipments
24P1305-B	Industrial Automation and Control
24P1305-C	Smart Grid Technologies
24P1305-D	Advanced Power Electronics
24P1305-E	Generic Elective **

MOOC_1: NPTEL Courses under SWAYAM for AY 2024-25							
Course Code Course Name							
24P1302-A	High Power Multi level Converters						
24P1302-B	Power Management Integrated Circuits						
24P1302-C	Power Quality Improvement Techniques						
24P1302-D	Power System Dynamics control and Monitoring						

Note: If a student has already learnt a course marked with #, then a course marked with ## is offered instead. Otherwise, the # marked course is mandatory.

**GE: An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa.

Matoshri College of Engineering and Research Centre (Autonomous) Master of Technology in Electrical Power Systems (MTech EPS) (wef 2024-25)

Semester II

Courses				Teach H	ing Sc rs/Wee		Examination and Marks (% of Total Curriculum and Marks) In_Sem Exam (40%) End_Sem Exam (60%) Marks			Credit				
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	CAT	CCE	ESE	Total	ТН	TUT	PR	Total
24P1309	PCC/MDC	MOOC_2	TH	4	-	-	20	20	60	100	4	-	-	4
24P1310	PCC	Power System Modeling	TH	4	-	-	20	20	60	100	4	-	-	4
24P1311	PCC	Power System Planning & Reliability	TH	4	-	-	20	20	60	100	4	-	-	4
24P1312	PEC	Program Elective Course II	TH	4	-	-	20	20	60	100	4	-	-	4
24P1313	PCCL	Program Core Course Lab	TW+ PR	-	-	4	4	0	60	100	-		2	2
24P1314	PECL	Program Elective Laboratory II	TW+ PR	-	-	4	4	0	60	100	-	-	2	2
24P1315 PMFG Project and Finance Management SE		SEMI	-	1	2	20	0	30	50	-	1	1	2	
		Total		16	01	01 10 260 390		390	(50)	16	1	5		
	Total Hours/ Week				27		650		650	22			22	

Course Code	Course Name
24P1312-A	EHV AC Transmission
24P1312-B	Energy Storage Systems
24P1312-C	Communication Protocols in SCADA system
24P1312-D	Electrical Power Distribution Systems
24P1312-E	Generic Elective **

MOOC_2: NPTEL Courses under SWAYAM for AY 2024-25						
Course Code	Course Name					
24P1109-A	^Note: Course Names will be declared as per					
24P1109-B	availability of NPTEL courses of 12/16					
24P1109-C	weeks available in that particular year for the					
24P1109-D	semester.					

Note: If a student has already learnt a course marked with #, then a course marked with ## is offered instead. Otherwise, the # marked course is mandatory.

**GE: An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa.

Matoshri College of Engineering and Research Centre (Autonomous) Master of Technology in Electrical Power Systems (MTech EPS) (wef 2024-25)

Table 8: Second Year MTech Electrical Power Syste	ems (SYMTech EPS) Semester III
--	--------------------------------

Courses			Teaching Scheme Hrs/Week Teaching Scheme (% of Total Curriculum and Marks) In_Sem Exam (40%) End_Sem Exam Marks (60%)			Credit								
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	CCE	CCE	ESE	Total	ТН	TUT	PR	Total
24P1316	PCC	MOOC_3	TH	4	-	-	20	20	60	100	4	-	1	4
24P1317	PCC	Power Quality Assessment and Mitigation	TH	4	-	-	20	20	60	100	4	-	-	4
24P1318	PEC	Program Elective Course III	TH	4		-	20	20	60	100	4	-	1	4
24P1319	PCCL	Program Core Course Lab III	PR	-	-	2	20	0	30	50	-	-	1	1
24P1320	PMFG	Company Law and Corporate Governance	SEMI	-	1	-	20	0	30	50	1	1	-	1
24P1321	PROJ	Dissertation Stage-I	PROJ	-	-	12	40	40	120	200	-	-	6	6
	Total			12	01	14	24	10	360	(00	12	1	7	20
Total Hours/ Week				27			600		600		20		20	

Program Elective Course 3						
Course Code Course Name						
24P1318-A	Artificial Neural Network and its applications in Power System					

MOOC_3: NPTEL Courses under SWAYAM for AY 2025-26						
Course Code	Course Name					
24P1316-A	^Note: Course Names will be declared as per					
24P1316-B	availability of NPTEL courses of 12/16					
24P1316-C	weeks available in that particular year for the					
24P1316-D	semester.					

Curriculum of MTech Electrical Power Systems, Department of Electrical Engineering

24P1318-B	Advance Processors and Applications
24P1318-C	Renewable Energy
24P1318-D	Intelligent Sensors and Instrumentation
24P1318-E	Generic Elective **

[.] **Note:** If a student has already learnt a course marked with #, then a course marked with ## is offered instead. Otherwise, the # marked course is mandatory.

**GE: An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa.

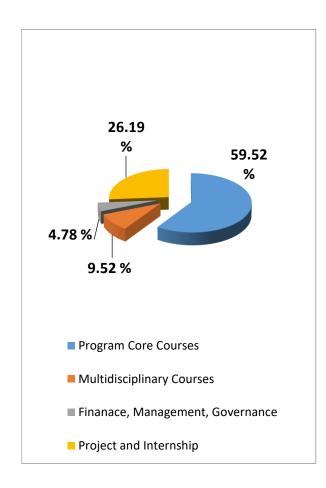
Matoshri College of Engineering and Research Centre (Autonomous)

Master of Technology in Electrical Power Systems (MTech EPS) (wef 2024-25)

Table 9: Second Year MTech Electrical Power Systems (SYMTech EPS) Semester IV

Courses			1 eaching Scheme			Examination and Mar (% of Total Curriculum and I In_Sem Exam (40%) End_Sem Exam (60%)				Credit				
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	CCE	CCE	ESE	Total	ТН	TUT	PR	Total
24P1322	INT	Internship\$	TW	-	-	\$	50	50	150	250	-	-	8	8
24P1323	PCC	MOOC _4	TH	4	-	-	20	20	60	100	4	-	-	4
24P1324	PROJ	Project Stage-II	PROJ	-	-	16	50	50	150	250	-	-	8	8
	Total Total Hours/ Week			4	-	16	24	0	360	(00	4	•	16	20
					-			600		600		20		20

MOOC_4: NPTEL Courses under SWAYAM for AY 2025-26						
Course Code	Course Name^					
24P1323-A	^Note: Course Names will be declared as per					
24P1323-B	availability of NPTEL courses of 12/16					
24P1323-C	weeks available in that particular year for the					
24P1323-D	semester.					


\$ Internship:

- Internship corresponding to major courses is to be completed after semester III Examinations and before commencement of semester IV of at least 180 hours/ 6 weeks; and it is to be assessed and evaluated in semester IV.
- It is almost imperative that the commencement of Semester IV needs to be approx. 3 weeks beyond the schedule.

Dr. Shridhar S. Khule Chairman, BoS Electrical Engineering

,	<u> </u>	\
4		r
		ı

Table 10: Broa	Table 10: Broad Courses' Categories, and Credit Distribution								
Broad Category	Description	Credit	Total Credit	%					
	Programme Core Course	30							
Program Courses Total Credit= 50	Programme Core Course Lab	05	35	41.66					
59.52% (19.00 % in online	Programme Elective Course	12	15	17.05					
mode)	Programme Elective Course Lab	03	13	17.85					
Multidisciplinary Courses Total Credit = 26 09.52%	Multidisciplinary Course	08	08	09.52					
Project	Study of Indian Constitution	01							
Management, Finance, and	Project Management and Finance	02	04	04.78					
Governance Total Credit =04 04.78%	Company Law and Governance	01							
Experiential Learning Courses	Project	14	22	26.19					
Total Credit =22 26.19%	Internship / On Job Training	08							
	Total	84	84	100					

24P1301 Computer Applications in Power System							
Teaching Scheme Credit Examination Head: TH							
Examination Scheme & Marks							
TH: 04 Hours/Week	04	ISE: CAT: 20 Marks					
		CCE: 20 Marks					
		ESE: 60 Marks					

Course Objectives:

- Learn mathematical functions of various optimization techniques
- Understand the necessity of load flow studies and various methods of load flow studies
- Understand the applications of various methods for optimal power flow analysis

Course Outcomes: On completion of the course, learner will be able to—	BL
CO1: Conversant with various optimization techniques	2
CO2: Use methods of power flow analysis, optimal power flow analysis	3
CO3: Elaborate optimal power system operation	4
CO4: Review optimal power flow analysis	5
CO5: Estimate loss coefficients for optimal power system operation	4
CO6: Develop an optimal power system by case study	6

Course Contents

Unit I	Optimization Techniques	07 Hours
--------	-------------------------	----------

Introduction, Statement of an optimization problem, design vector, design constraints, constraint surface, objective function, classification of optimization problem. Classical optimization Techniques, single variable optimization, multivariable optimization with equality constraints, Direct substitution method, constrained variation method, Lagrange Multiplier method, formulation of multivariable optimization, Kunh Tucker conditions.

Unit II Load Flow Studies 07 Hours

Revision of Load flow studies by using Newton Raphson method (polar and rectangular). Contingency evaluation, concept of security monitoring, Techniques of contingency evaluation, Decoupled load flow and fast decoupled load flow.

Unit III AC- DC and Three Phase Load flow 07 Hours

Three Phase Load Flow: Three phase load flow problem notation, specified variables, derivation of equations. **AC-DC load flow**: Introduction, formulation of problem, D.C. System model, converter variables, Derivation of equations, Inverter operation, generalized flow chart for equation solution.

Unit IV Estimation 06 Hours

Optimal power flow analysis considering equality and inequality constraints. Economic dispatch with and without limits (Classical method) Gradient method, Newton's method, Newton Raphson method.

Unit V	Optimal Power System Operation	7 Hours
--------	--------------------------------	---------

Calculation of loss coefficients, loss coefficients using sensitivity factors, power loss in a line, Generation shift distribution factors, Transmission loss coefficients, transmission loss formula as a function of generation and loads, economic dispatch using loss formula which is function of real and reactive power, linear programming method.

Case Studies (if any)

Books:

Textbooks:

- 1. Computer Aided Power System Operation and Analysis-R.N.Dhar, Tata McGraw Hill New Delhi..
- 2. Computer Techniques in Power System Analysis- M.A. Pai, Tata Mc-Graw Hill New Delhi.
- 3. Computer Methods in Power System Analysis- Stagg and El. Abiad, Mc-Graw Hill (International Student Edition.)

Reference Books:

- 1. Optimisation Techniques-S.S.Rao, Wiely Eastern Ltd, New Delhi.
- 2. Modern Power System Engineering, Nagrath and Kothari (Tata McGraw Hill).
- 3. Computer Analysis of Power Systems-J.Arrilinga, C.P.Arnold. Wiely Eastern Ltd.
- 4. Electrical Energy System Theory—an introduction- Olle Elgerd. TMH Publishing Company, New Delhi.

e-Books:

 An Introduction to Statistical Learning by Gareth James https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf

MOOC Courses:

• Power Systems Operation and Control, IIT Kanpur. Dr. S.N. Singh. https://archive.nptel.ac.in/courses/108/104/108104052/

The CO-PO Mapping Matrix	The	CO-PO) Man	ning N	latrix
--------------------------	-----	-------	-------	--------	---------------

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	1	3	3	2	2	2	3
CO2	3	1	3	3	2	2	2	3
CO3	3	1	2	3	2	2	3	2
CO4	2	1	2	3	2	2	2	2
CO5	3	1	3	3	2	2	2	3
CO6	3	3	3	3	3	3	2	3

	24P1302 : M	OOC-1
Teaching Scheme	Credit	Examination Head: TH
		Examination Scheme & Marks
TH: 04 Hours/Week	04	ISE: CAT: 20 Marks
		CCE: 20 Marks
		ESE: 60 Marks
	Course C	Contents

MOOC-1: Ude	OC-1: Udemy Courses for AY 2024-25#			
Course Code	Course Name			
24P1302-A	Electrical Power Distribution system fundamentals			
24P1302-B	Modern Electric Vehicle technology			
24P1302-C	Power Electronics Drives			
24P1302-D	Renewable Energy Sources.			

	24P1303: Research Methodology				
Teaching Scheme	Credit	Examination Head: TH			
		Examination Scheme & Marks			
TH: 04 Hours/Week	04	ISE: CAT: 20 Marks CCE: 20 Marks			
		ESE: 60 Marks			

Course Objectives:

- 1. To understand basic concepts of research and its methodologies
- 2. To learn the methodology to conduct the Literature Survey
- 3. To acquaint with the tools, techniques, and processes for statistical analysis
- 4. To effectively use and compare optimization techniques for solving problems involving single and multi-parameter cost functions.
- 5. To understanding sampling theory and its application in research

Course Outcomes: On completion of the course, learner will be able to—	BL
CO1: Identify fundamental concepts, purposes, processes, and motivations of research, encompassing various paradigms, types, and scientific postulates.	1
CO2: Conduct a literature survey, define a clear research statement, develop a comprehensive research plan, identify diverse research tools, and present the report.	3
CO3: Conduct comprehensive statistical analyses, including error and uncertainty assessments, and perform hypothesis testing on research data.	3
CO4: Apply various optimization techniques to solve complex research problems involving single and multi-parameter cost functions and, present the results and methodologies in a comprehensive technical report.	3
CO5: Apply sampling theory and estimation techniques to determine sample size for estimating population parameters in research by presenting the findings.	3
CO6: Develop the skills to conduct comprehensive research, encompassing the definition of research statements, literature surveys, and the application of statistical analyses, optimization techniques, and sampling methods. Use these skills to provide innovative solutions for complex, real-life problems, and present your findings in a substantial technical report. Course Contents	6
Unit I Introduction 07 Hot	iire

Evolution of Research Methodology: Meaning, nature, scope, and significance of research; Research paradigm; The purpose and Products of Research; Reasons for doing research, Objectives of research, Motivation for research; Postulates underlying scientific investigations; Types of research; Research process and work flow.

Engineering Research-Why? Research Questions, Engineering Ethics, conclusive proof-what constitutes A research project-Why take on?

IEEE Code of Ethics, ACM Software Engineering Code of Ethics
al Practice, Code of Ethics especially covering Engineering discipline,
- environment, sustainable outcomes, employer, general public, &
ering Disasters.
1

Unit II Literature Search and Review, developing Research Plan 07 Hours

Archival Literature, Why should engineers be ethical? Types of publications- Journal papers, conference papers, books, standards, patents, theses, trade magazine, newspaper article, infomercials, advertisement, Wikipedia & websites, Measures of research impact, Literature review, publication cost.

Developing Research Plan: Research Proposals, Finding a suitable research questions, The elements of research proposals-title, details, budget, Design for outcomes-1D data, 2D data, 3D data, N-D data, The research tools- Experimental measurements, numerical modeling, theoretical derivations & Calculations, curve matching.

Case Studies (if any) Engineering dictionary, Shodhganga, The Library of Congress, Research gate, Google Scholar, Bibliometrics, Citations, Impact Factor, h-index, I-index, plagiarism, copyright infringement.

Unit III Statistical Analysis 07 Hours

Statistical Analysis: Introduction, Sources of error and uncertainty, One-Dimensional Statistics: combining errors and uncertainties, t-test, ANOVA statistics, example, Two-Dimensional Statistics: example, Multi-Dimensional Statistics: partial correlation coefficients, example, Null hypothesis testing

Unit IV	Optimization Techniques	07 Hours	Ī
Case Studies (if any)	GNU PSPP Tool, SOFA, NOST-Dataplot		

Optimization Techniques: Introduction, Two-parameter optimization methods: sequential uniform sampling, Monte Carlo optimization, Simplex Optimization method, Gradient Optimization method, Multi- parameter optimization methods, The cost function.

Case Studies (if any)

Unit V Data Sampling 7 Hours

Sampling Fundamentals: Need for Sampling, Some Fundamental Definitions, Important Sampling Distributions, Central Limit Theorem, Sampling Theory, Sandler's A-test, Concept of Standard Error, Estimation, Estimating the Population Mean (μ), Estimating Population Proportion, Sample Size and its Determination

Case Studies (if any)	Determination of Sample Size through the Approach Based on Precision Rate
	and Confidence Level

Books:

Textbooks:

- 1. David V Thiel, "Research Methods- for Engineers", Cambridge University Press, ISBN:978-1-107-61019-4
- **2.** Kothari C.R., "Research Methodology. New Age International, 2004, 2nd Ed; ISBN:13: 978-81-224-1522-3.

Reference Books:

- **1.** Caroline Whitbeck, "Ethics in Engineering Practice and Research", 2nd Ed., Cambridge University Press; ISBN :978-1-107-66847-8
- **2.** Gordana DODIG-CRNKOVIC, "Scientific Methods in Computer Science", Department of Computer Science Malardalen University, Vasteas, Sweden; ISBN:91-26-97860-1

E-books:

 Research Methodology-<u>https://www.drnishikantjha.com/papersCollection/Research%20Methodology%20.pdf</u>
 Research Methodology Tools and Techniques- https://www.euacademic.org/BookUpload/9.pdf

MOOC Courses

- Introduction to Research- https://onlinecourses.nptel.ac.in/noc23_ge36/preview
- Research Methodology- https://onlinecourses.nptel.ac.in/noc22 ge08/preview
- Introduction to Research- https://nptel.ac.in/courses/121106007

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	2	3	2	2	2	1	1
CO2	3	3	3	2	3	3	2	1
CO3	3	3	2	2	2	2	1	1
CO4	3	3	3	2	2	3	2	2
CO5	3	3	3	2	2	3	2	2
CO6	3	3	3	2	2	3	2	2

24P1304: Power System Economics and Management							
Teaching Scheme	Credit	Examination Head: TH					
		Examination Scheme & Marks					
TH: 04 Hours/Week	04	ISE: CAT: 20 Marks					
		CCE: 20 Marks					
		ESE: 60 Marks					

Course Objectives:

Unit I

- 1. Understand the necessity of regulations and power sector economics.
- 2. Understand tariff structure in detail.
- 3. Get knowledge of global power sector reforms.
- 4. Understand the concept and types of power market and price of power.
- 5. Learn the transmission planning and pricing.

Course Outcomes: On completion of the course, learner will be able to—				
CO1:- Analyze the effect of power sector reform in India as well as globally.				
CO2:- Evaluate the economic aspects of power project.	5			
CO3:- Differentiate between types of power-markets.	2			
CO4:- Workout methods of Transmission Pricing.	3			
CO5:-Design a basic transmission plan and evaluate pricing strategies for transmission services, taking into account system constraints and economic factors.	6			
CO6: Understanding Management Practices in Power Systems	3			

Course Contents Power Sector in India

Introduction to various institutions in Indian Power sector such as CEA, Planning Commissions, PGCIL, PFC,
Ministry of Power, state and central governments, REC, utilities and their roles. Critical issues / challenges
before the Indian power sector, Salient features of Electricity act 2003, Various national policies, Energy policy
and guidelines under this act latest amendments in Indian Power Sector. Need of regulation and deregulation of

power industry. Conditions favouring deregulation in power sector.

Unit II	Power sector economics and regulation	07 Hours
---------	---------------------------------------	----------

07 Hours

Typical cost components and cost structure of the power sector, Different methods of comparing investment options, Concept of life cycle cost, annual rate of return, methods of calculations of Internal Rate of Return(IRR) and Net Present Value(NPV) of project, Short term and long term marginal costs, Different financing options for the power sector. Role of regulation and evolution of regulatory commission in India, Regulatory process in India, stages of tariff determination. Economic regulations — cost plus, performance based, incentive, Price and Revenue cap, Rate of return, sliding scale regulation. Key performance parameters.

Unit III Power Tariff 07 Hours

Different tariff principles (marginal cost, cost to serve, average cost), objectives and components of tariff. Consumer tariff structures and considerations, different consumer categories, telescopic tariff, fixed and variable charges, time of day, interruptible tariff, power factor tariff, different tariff based penalties and incentives etc., tariff linked to quality of supply and service. Multi year tariff, levelised tariff. Subsidy and cross subsidy, life line tariff. Comparison of different tariff structures for different load patterns. Government policies in force from time to time. Effect of renewable energy and captive power generation on tariff. Determination of tariff for renewable energy. Feed in tariff for renewable. Non price issues in electricity restructuring, environmental and social considerations.

Unit IV Power sector restructuring models and global reforms 07 Hours

Different industry structures (vertically integrated, regulated and deregulated), key market entities- ISO, Genco, Transco, Disco, Retailco. Competition in the electricity sector- conditions, barriers, different types, benefits and challenges. Different market trading models, single buyer model, Wholesale competition, retail completion model. Models based on contractual arrangement – pool model, bilateral/multilateral model, pool and bilateral contracts. ISO models- micro, mini and max ISO. Global experience with electricity reforms in different countries. Open access, Introduction to Indian Energy Exchange and its operation time markets, market power and exercising it and its effect on market operations.

Unit V Electricity Markets and Pricing 7 Hours

Electricity price basics, Demand and price elasticity. Types of power and energy markets- spot market, day ahead, hour ahead market, forward contract future contract, option contract, contract for differences, ancillary market. Market operation market clearing price, market efficiency, effect gate closure, settlement process. Market Clearing price (MCP), Zonal and locational MCPs. Dynamic/ spot pricing, Market power and exercising market power.

Books:

Textbooks:

- 1. Fundamentals of Power System Economics by D.S. Kirschen and G. Strbac, John Wiley & sons.
- 2. Electricity Economics Regulation and Deregulation, by G. Rothwell and T Gómez, Wiley InterScience.
- 3. Sally Hunt, "Making Competition Work in Electricity", 2002, John Wiley Inc.
- 4. Electric Utility Planning and Regulation, Edward Kahn, American Council for Energy Efficient Economy.

Reference Books:

- 1. "Know Your Power", A citizens Primer On the Electricity Sector, Prayas Energy Group, Pune.
- 2. Power System Economics Designing markets for Electricity by Steven Stoft, Wiley-inter Science.
- 3. Market Operations in Electric Power Systems, Forecasting, Scheduling and Risk Management, by M. Shahidepour, Hatimyamin, Zuyi Li, Wiley InterScience.
- 4. Deregulation in Power Industry, course hand outs by S.A. Khaparde.

Other references:

- 1. Regulation in infrastructure Services: Progress and the way forward TERI, 2001
- 2. Maharashtra Electricity Regulatory Commission Regulations and Orders -www.mercindia.com

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	2	3	3	2	2	2	3
CO2	3	1	3	3	2	2	3	3
CO3	2	1	3	3	2	2	2	2
CO4	3	2	3	3	3	2	2	2
CO5	3	3	3	3	3	2	3	3
CO6	3	1	3	3	3	3	2	2

24P1305- A: Partial Discharges in Electrical Equipment						
Teaching Scheme	Credit	Examination Head: TH				
		Examination Scheme & Marks				
TH: 04 Hours/Week	04	ISE: CAT: 20 Marks				
		CCE: 20 Marks				
		ESE: 60 Marks				

Course Objectives:

- Understand the phenomenon of Partial discharge and techniques for its measurement.
- Learn various problems associated with partial discharge measurement.
- Know the effects of partial discharge on insulating material.
- Evaluate and locate the partial discharge.

Course Outcomes: On completion of the course, learner will be able to—	BL
CO1: Identify the occurrence of partial discharge.	1
CO2: Measure and evaluate partial discharge.	5
CO3: Know the effects of partial discharge.	2
CO4: Proficiency in PD Data Analysis.	3
CO5: Assessment of Equipment Reliability and Lifespan.	4
CO6: Knowledge of PD Testing Standards and Compliance.	3

Course Contents

Unit I		The Ph	enomenon	of Partial Dis	charge (PD):	U.	/ Hours	
duction. Definition	of terms.	typical	electrode	configurations	with PD). internal	discharges	and surfa	

Introduction, Definition of terms, typical electrode configurations with PD, internal discharges and surface discharges, external discharges, equivalent circuits, PD characteristics of parameters, waveform and characteristics of an individual PD pulse, train of PD current pulses, train of PD pulses in relation to the temporarily assigned instantaneous value of the high voltage, non electrical PD characteristics parameters.

Unit II The Phenomenon of Partial Discharge (PD): 07 Hours

Wave form and spectrum of PD, PD charge measuring equipment, integration in the frequency domain, selectively wide band system, narrow band system, integration in the time domain with very large wide band systems, measuring impedance or coupling 4 terminal device, PD measuring circuits, calibration, calibration pulses, calibration of PD measuring setup, calibration of the complete test set up, uncertainty of measurements.

Unit III	Screening and Filtering Problems during Partial Discharge	07 Hours
	Measurements:	

Need for screening, design of screens, completely enclosed screen, screen interruptions, effect of corners, cavity resonance, design of filters, measurement of screening efficiency, lead through bushings.

	Unit IV Power sector restructuring models	s and global reforms 07 Hours
--	---	-------------------------------

Effects of PD on gaseous insulating materials, liquid insulating materials, solid insulating materials, surface discharges, internal discharges, mixed dielectrics.

Unit V Electricity Markets and Pricing 7 Hours

Calculation of loss coefficients, loss coefficients using sensitivity factors, power loss in a line, Generation shift distribution factors, Transmission loss coefficients, transmission loss formula as a function of generation and loads, economic dispatch using loss formula which is function of real and reactive power, linear programming method.

Books:

Textbooks:

- 1. Kreuger F. H. Partial Discharge Measurements.
- 2. Dieter Konig & Y Narayan Rao, PD in Electrical Apparatus. Vde-Veriag gmph Berlin.

Reference Books:

- 1. High Voltage Engineering, O. Kuffel E, Zaengl W. S, Oxford, Pergamon.
- 2. IEC Publication 270 (1981) Partial Discharge Measurements.

The CO-PO Mapping Matrix								
CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	1	3	3	2	3	2	3
CO2	3	1	3	3	2	3	3	3
CO3	3	2	3	3	3	2	2	2
CO4	3	2	3	2	3	2	2	2
CO5	3	3	3	3	2	2	3	3
CO6	3	1	3	3	2	3	2	2

24P1305- B: Industrial Automation and Control							
Teaching Scheme	Credit	Examination Head: TH					
		Examination Scheme & Marks					
TH: 04 Hours/Week	04	ISE: CAT: 20 Marks					
		CCE: 20 Marks					
		ESE: 60 Marks					

Course Objectives:

- 1. Understand the phenomenon of industrial automation.
- 2. Learn various industrial measurement characteristics.
- 3. Know the various techniques of automatic control.
- 4. Understand various hardware required for industry- automation.

Course Outcomes: On completion of the course, learner will be able to—	BL
CO1: Understand the fundamental concepts and components of PLC systems.	2
CO2: Analyze industrial measurement system characteristics and their applications in PLC systems.	4
CO3: Apply principles of automatic control in the design and implementation of PLC systems.	3
CO4: Evaluate different types of PLC architectures and their suitability for various industrial applications.	5
CO5: Design and implement PLC programs for controlling industrial processes and machinery.	6
CO6 (Generic): Understand and analyze management practices in PLC systems, including safety and performance considerations.	2

Course Contents

Unit I Introduction 07 Hours

Architecture of industrial automation system, development trends in industrial automation, classification of existing systems, and functionality of industrial automation system. Relay and contactor logic, AC and DC relays and their role for load control. Power and Auxiliary contactors and their usage for load control.

Unit II Industrial Measurement System Characteristics 7/ H	Unit II	Industrial Measurement System Characteristics	07 Hour
--	---------	--	---------

Sensors and control logic, control using potential free output sensors, Control using PO, PC, NO, NC type output sensor, 2W (2 wire), 3W (3 wire), 4W (4 wire) and 4WC sensors, Linear potentiometer Timer hardware architecture, Controlling industrial system using timers, Controlling industrial system using counters. Temperature measurement, Pressure, Force and Torque Sensors, Motion Sensing, Flow measurement, Signal Conditioning, Data Acquisition Systems.

Unit III	Automatic Control	07 Hours

Introduction, P-I-D Control, manual and auto PID Control Tuning, Feed forward Control Ratio Control, Time Delay Systems and Inverse Response Systems, Special Control Structures. Temperature controller hardware architecture.

Unit IV PLC 07 Hours

Introduction to Sequence Control, PLC, RLL (Relay Ladder Logic), Sequence Control. Scan Cycle, Simple RLL Programs, Sequence Control. More RLL Elements, RLL Syntax, A Structured Design Approach to Sequence, PLC Hardware Environment, Introduction To CNC Machines, Contour generation and Motion Control, Allen Bradley PLC and SIEMEN PLC.

Unit V Industrial Control 7 Hours

Basics of hydraulics, Hydraulic components their functions and symbols Hydraulic actuators, Pumps and its operation, pump control, Hydraulic valves (Direction control, pressure and flow control), special valves, pressure gauges and switches, hydraulic logic circuits, Hydraulic Control System, Multiple pressure and speed operations, Industrial Hydraulic Circuit, Pneumatic systems and components Pneumatic Control Systems, compressor operation and control, air treatment.

Books:

- 1 Lingefeng Wang, Kay Chen Tan, "Modern Industrial Automation and Software Design" John Wiley & Sons Inc.
- 2 K. L.S. Sharma, "Overview of Industrial Process Automation" Elsevier
- 3 Kok Kiong "Drives and Control for Industrial Automation" Springer

@The CO-PO Mapping Matrix

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	1	3	3	2	3	2	3
CO2	3	1	3	3	2	3	3	3
CO3	3	2	3	3	3	2	2	2
CO4	3	1	3	3	2	3	3	3
CO5	3	2	3	3	3	3	3	3
CO6	3	2	3	3	3	3	2	2

24P1305- C: Smart Grid Technologies						
Teaching Scheme	Credit	Examination Head: TH				
		Examination Scheme & Marks				
TH: 04 Hours/Week 04		ISE: CAT: 20 Marks				
		CCE: 20 Marks				
		ESE: 60 Marks				

Course Objectives:

Objectives:

- 1. Understand the fundamental concepts, architecture, and components of smart grids.
- 2. Analyze the role of smart grids in enhancing the efficiency, reliability, and sustainability of power systems.
- 3. Explore the integration of renewable energy sources and energy storage systems in smart grids.
- 4. Learn about advanced communication and control technologies used in smart grids.
- 5. Understand the importance of cybersecurity in protecting smart grid infrastructure.
- 6. Investigate the economic, regulatory, and policy aspects of smart grid development.

Course Outcomes: On co	ompletion of the course, learner will be able to-	BL		
CO1: Understanding of Smart Grid Concepts: Students will be able to explain the basic concepts architecture, and evolution of smart grids, and their role in modern power systems.				
CO2: Application of Smart Grid Technologies: Students will demonstrate the ability to identify, analyze, and apply smart grid technologies for improving grid performance and reliability.				
	nd Control in Smart Grids: Students will be able to implement and protocols and control systems in smart grids for real-time monitoring			
	rewable Energy and Energy Storage: Students will evaluate the ites and energy storage systems into the smart grid, considering techniques.	_		
CO5: Assessment of Economic, Regulatory, and Policy Aspects: Students will critically analyze the economic, regulatory, and policy implications of smart grid implementation				
CO6: Development of Smart Grid Solutions: Students will be able to independently research and develop innovative smart grid solutions to solve current and future grid challenges.				
	Course Contents			
Unit I	Introduction to Smart Grids	07 Hours		
1	f Smart Grids, Evolution of Power Systems to Smart Grids, Driv Standards and Regulations.	ers and Benefits of		
Unit II	Smart Grid Technologies	07 Hours		

Smart Meters and Advanced Metering Infrastructure (AMI), Phasor Measurement Units (PMUs) and Wide-Area Monitoring Systems (WAMS), Sensors and Smart Devices for Grid Monitoring Advanced Distribution Management Systems (ADMS).

Unit III Communication and Control in Smart Grids 07 Hours

Communication Technologies: Wired and Wireless Protocols and Standards for Smart Grid, Communication Supervisory Control and Data Acquisition (SCADA) Systems, Distributed Control and Automation in Smart Grids.

Unit IV Integration of Renewable Energy and Energy Storage 07 Hours

Challenges of Renewable Energy Integration, Role of Energy Storage in Smart Grids, Microgrids and Distributed Generation, Grid-Interactive Inverters and Power Electronics.

Unit V Economic, Regulatory, and Policy Aspects of Smart Grids 7 Hours

Case Studies on Smart Grid Implementations, Emerging Trends: Blockchain, AI, and Machine Learning in Smart Grids, Review and Discussion on Current Research in Smart Grids, Consumer Engagement and Behavioral Aspects, Role of Electric Vehicles in Smart Grids.

Books:

- 1 "Smart Grid Handbook" edited by Xiao-Ping Zhang.
- 2 "Cybersecurity and Privacy in Smart Grids: Challenges, Solutions, and Future Directions" by Sanjay Goel and Enrique R. Villa-Cubero.
- 3 "Renewable Energy Integration: Practical Management of Variability, Uncertainty, and Flexibility in Power Grids" by Lawrence E. Jones.
- 4 Power System Restructuring and Deregulation: Trading, Performance and Information Technology" by Loi Lei Lai.

@The CO-PO Mapping Matrix

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	1	3	3	2	3	2	3
CO2	3	1	3	3	2	3	2	3
CO3	3	2	3	3	2	3	2	2
CO4	3	1	3	3	2	3	3	3
CO5	3	3	3	3	2	3	3	3
CO6	3	3	3	3	3	3	3	3

24P1305- D: Advanced Power Electronics						
Teaching Scheme	Credit	Examination Head: TH				
		Examination Scheme & Marks				
TH: 04 Hours/Week	04	ISE: CAT: 20 Marks				
		CCE: 20 Marks				
		ESE: 60 Marks				

Course Objectives:

- 1. To learn about various advancements in Power Electronics.
- 2. To know working of various types of Power Electronic converter configurations.
- 3. To understand use of different energy storage systems.
- 4. To know various advanced control techniques for Power flow control in converter configurations.

Course Outcomes: On completion of the course, learner will be able to—	BL
CO1: Select appropriate Power Electronic converter configuration for desired application.	2
CO2:Analyze working and control requirements of the Power Electronic converter configuration.	3
CO3: Choose and apply the suitable control technique for operation of Power Electronic converter configuration	4
CO4: Select the required energy storage system correctly.	5
CO5: Compare and comment on performance of the chosen Power Electronic converter configuration with other converters for the same application.	4
CO6: Understand and analyze management practices in power electronics, including safety, efficiency, and regulatory considerations.	6

Course Contents

Unit I	Voltage Source Converters	07 Hours
--------	---------------------------	----------

Review of 3-ph- full wave bridge converter, operation and harmonics, 3 level voltage source converters. PWM converter. Generalized technique of harmonic elimination and voltage control. Advanced modulation techniques (space vector modulation, 3 harmonic PWM), Converter rating.

Unit II Self and Line commutated current source converter 07 Hours

Basic concepts of CSC, converters with self commutating devices. Comparison with voltage source converter. (ii) Matrix Converter: 3×3 matrix converter, principle of working, mathematical treatment, comparison of matrix converter with multipulse converter.

Unit III	Multilevel Inverters:	07 Hours

Multilevel concept, Types of multilevel Inverters, diode clamped multilevel inverter, flying capacitors multilevel inverters, cascaded multilevel inverter, switching device currents, d.c. link capacitor voltage balancing, features of multilevel inverters, comparison of multilevel converters. Applications of multilevel Inverter: Reactive power compensation Back to back intertie system, Utility compatible adjustable speed drives.

Unit IV Energy Storage Systems: 07 Hours

Flywheel energy storage system, Superconducting magnetic energy storage system, other advance energy storage systems

Unit V Akagi's p-q theory: 7 Hours

Conventional concepts of active and reactive power in single phase and three phase circuits- equation of power with sinusoidal voltage source and non-linear loads - αβο transformation of three phase four wire system- Akagi's instantaneous power (pq) theory- relationship between Akagi's components and conventional active and reactive power application of pq theory to reactive and harmonic power compensation in simple circuits.

Books:

- 1 Power Electronic Control in Electrical Systems by E. Acha, Miller & Others (Newones, Oxford publication) first Edition
- 2 Power Electronics by M. H. Rashid Prentice Hall of India Pvt. Ltd. New Delhi, (3rd Edition)
- 3 Understanding FACTS by N.G. Hingorani & L. Gyugyi (IEEE Press, Indian Edition)
- 4 E. H. Watanube, R.M. Stephen and Maurico Ardes "New Concepts of instantaneous active and reactive powers in Electrical systems with Generic loads" (IEEE transaction on Power Delivery Vol.8, no.2 April 1993, PP-697-703.
- L. Benchaita, S. Sadaate and A. Salemnia "A comparison of voltage source and current source shunt Active filter by simulation and Experimentation" (IEEE Transaction on Power Systems, Vol 14, No.2, May 99, PP 642-647.
- 6 H.Akagi, E.H. Watanabe and M.Aredes "Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press, New York.

@The CO-PO Mapping Matrix

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	3	3	3	3	2	3	2	3
CO2	3	2	3	3	3	3	3	3
CO3	2	2	3	3	2	3	2	3
CO4	3	2	3	3	2	3	3	3
CO5	3	2	3	3	3	3	2	3
CO6	2	3	3	3	2	3	3	2

24P1305- E: Generic Elective (GE)					
Teaching Scheme	Credit	Examination Head: TH			
		Examination Scheme & Marks			
TH: 04 Hours/Week	04	ISE: CAT: 20 Marks			
		CCE: 20 Marks			
		ESE: 60 Marks			

An elective course chosen generally from an unrelated discipline/subject, with an intention to seek. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa

24P	1306- : Program	Core Course Lab I	
Ceaching Scheme Credit Examination Head: TH			
		Examination Scheme & Marks	
PR: 04 Hours/Week	02	CCE: 20 Marks	
		END SEM: 30 Marks	
		Total: 50 Marks	
7	24P1406: Electri	cal Power System Lab	
Companion Course: Computer App	olications in Power S	ystems, Power System Economics and Management	
Course Outcomes: On completion	of the course, learner	will be able to—	
CO Mapping: CO1 to CO5	for all Lab Assignm	nents	
C.	Evmovimo	nts/A ssignments	

Sr. No.	Experiments/Assignments	
1	CO1: Understanding of Power Sector Structure and	_
	Regulations	2
2	CO2: Application of Financial and Economic Evaluation Techniques in Power Projects	5
3	CO3: Simulation and Analysis of Power System	4
	Operations	
4	CO4: Optimization of Power Systems and Economic Dispatch	4
5	CO5: Evaluation of Electricity Markets and Pricing Mechanisms	5
	CO6: Integration of Renewable Energy and Policy Implications	
6		6

Suggested List of Laboratory Experiments/Assignments (Any 8 laboratory assignments)

1	analysis of Indian Power Sector Institutions and Regulations				
	• Objective: To study the roles and challenges of institutions in the Indian power sector, and understand the impact of regulatory frameworks like the Electricity Act of 2003.				
2	Economic Analysis and Financing Options for Power Projects				

Economic Analysis and Financing Options for Power Projects

Objective: To apply financial evaluation methods like IRR, NPV, and life cycle costs for power projects, and analyze different financing options.

Analysis of Tariff Structures and Consumer Categories

3

Objective: To evaluate and compare different tariff structures for various consumer categories, and analyze the impact of tariffs on energy consumption and renewable energy integration.

4	Charles of Dower Contan Doctor Doctor and Models and Clobal Deforms
4	 Study of Power Sector Restructuring Models and Global Reforms Objective: To explore various power sector restructuring models (regulated, deregulated) and study global power sector reforms.
5	Electricity Market Operations and Pricing Mechanisms
	Objective: To simulate electricity market operations, study market clearing prices, and understand pricing mechanisms like zonal and locational pricing.
6	Three-Phase Load Flow Analysis Using Newton-Raphson Method
Ü	Objective: To simulate three-phase load flow problems using the Newton-Raphson method in both polar and rectangular forms.
7	AC-DC Load Flow Simulation
•	Objective: To model and analyze AC-DC load flow and evaluate the role of DC components using MATLAB.
8	Classical Optimization Techniques for Power System Operation
Ü	Objective: To apply optimization techniques such as the Lagrange Multiplier method, constrained variation method, and Kuhn-Tucker conditions to power system problems.
9	Contingency Evaluation and Security Monitoring
	Objective: To simulate and analyze power system contingencies using fast-decoupled load flow methods and evaluate system security.
10	Economic Dispatch Using Loss Formula and Linear Programming
	Objective: To perform economic dispatch considering transmission losses using linear programming methods and MATLAB simulations.
@Th	e CO-PO Mapping Matrix

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	2	2	2	3	2	1	1	1
CO2	3	2	2	3	1	1	2	2
CO3	2	2	2	3	1	2	3	2
CO4	3	2	3	3	3	2	2	2
CO5	1	2	1	1	2	3	2	2
CO6	3	1	2	3	2	3	2	3

Teaching Scheme:	Credit	Examination Head: PR	
		Examination Scheme:	
		CCE: 20 Marks	
PR: 02 Hours/Week	01	End_Sem: 30 Marks	
		Total: 50 Marks	

Companion Course: Elective -I

Syllabus Contents:

 The lab practice consists of the tutorials / experiments / Case Study / industrial visit / Industry base Mini project related to Electrical Power systems as decided by the course supervisors of the Program Elective Core Lab (PECL) as follows

24P1305-A	Partial Discharges in Electrical Equipments
24P1305-B	Industrial Automation and Control
24P1305-C	Smart Grid Technologies
24P1305-D	Advanced Power Electronics
24P1305-E	Generic Elective **

24P1308 Study of Indian Constitution				
Teaching Scheme Credit Examination Head: SEMI				
Teaching Scheme	Credit	Examination Scheme & Marks		
TUT: 01 Hour/Week	01	ISE: 20 Marks ESE: 30 Marks		

Prerequisite: Any graduate

Course Objectives:

- To acquaint with the basic principles of Constitution and Constitutionalism
- To understand the reasons, operation and justification of the growth of Fundamental Rights in India
- To learn the Directive Principles of India.
- To understand the powers, functions and structures of various Constitutional bodies.
- To study the constitutional operations in the context of social, economic and political.

Course Outcomes: On completion of the course, learner will be able to—	BL
CO1: Apply knowledge of the historical background, key features, and provisions related to	3
citizenship in the Indian Constitution to assess its relevance to contemporary governance.	
CO2: Analyze and present findings for study of - the structure and classification of fundamental	6
rights, directive principles of state policy, and fundamental duties enshrined in the Constitution.	
CO3: Comprehend the roles, powers, and functions of the Union executive, Union Legislature, and	2
Union judiciary, with a focus on parliamentary procedures and the Supreme Court.	
CO4: Survey the composition, powers, and functions of the State executive, State Legislature, and	4
State judiciary, including the role of Governors and High Courts.	
CO5: Discover the legislative, administrative, and financial relations between the Union and	4
State governments, including provisions for emergency, trade, and amendments to the Constitution.	
CO6: Elaborate the Indian Constitution's framework and its role in governing the structure and	6
functioning of both the Union and State governments, fostering responsible citizenship.	

Course Contents

	Unit I	Introduction and Citizenship	04 Hours	
	Definition of constitution, historical back ground, salient features of the constitution. Preamble of the			
constitution, union and its territory. Meaning of citizenship, types, termination of citizenship.			p.	

Unit II	Rights in the Constitution and Directive	06 Hours
	Principles of State Policy	

Definition of state, fundamental rights, general nature, classification, right to equality, right to freedom, right against exploitation. Right to freedom of religion, cultural and educational rights, right to constitutional remedies. Protection in respect of conviction for offences. Directive principles of state policy, classification of directives, fundamental duties.

Unit III Structure, Powers and Functions of Union 05 Hours Legislature

The Union executive, the President, the vice President, the council of ministers, the Prime minister, Attorney-General, functions. The parliament, composition, Rajya sabha, Lok sabha, qualification and disqualification of membership, functions of parliament. Union judiciary, the supreme court, jurisdiction, appeal by special leave.

Unit IV Structure, Powers and Functions of State 05 Hours Legislature

The State executive, the Governor, the council of ministers, the Chief minister, advocate general, union Territories. The State Legislature, composition, qualification and disqualification of membership, functions. The state judiciary, the high court, jurisdiction, writs jurisdiction.

Unit V Legislative Relation between Union and State 05 Hours

Relations between the Union and the States, legislative relation, administrative relation, financial Relations,

Inter State council, finance commission. Emergency provision, freedom of trade commerce and inter course,
comptroller and auditor general of India, public Services, public service commission, administrative Tribunals.

Official language, elections, special provisions relating to certain classes, amendment of the Constitution.

Books:

Text Books:

- 1. D. D. Basu, Introduction to the constitution of India, Lexis Nexis, New Delhi, 24e, 2019.
- 2. P. M. Bhakshi, The constitution of India, Universal Law, 14e, 2017.

Reference Books:

- 1. Ministry of law and justice, The constitution of India, Govt of India, New Delhi, 2019.
- 2. J. N. Pandey, The constitutional law of India, Central Law agency, Allahabad, 51e, 2019.
- 3. M. V. Pylee, India's Constitution, S Chand and company, New Delhi, 16e, 2016.

The CO-PO Mapping Matrix										
	CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	
	CO1	-	2	2	-	-	1	-	-	
	CO2	-	2	_	-	_	2	-	-	
	CO3	-	3	2	_	-	2	-	-	
	CO4	-	2	-	-	-	1	-	-	
	CO5	-	3	2	_	-	1	-	-	
	CO6	-	2	-	-	-	2	-	-	